
96B Quad Ethernet Mezzanine

Jeff Johnson

May 01, 2021

DATASHEET

1 Description 1

2 Features 3

3 Where to buy 5
3.1 Pin Configuration . 5
3.2 Specifications . 9
3.3 Detailed Description . 10
3.4 Mechanical Information . 19
3.5 Getting Started . 21
3.6 Board Setup . 28
3.7 Programming Guide . 32
3.8 References . 37

i

ii

CHAPTER

ONE

DESCRIPTION

The 96B Quad Ethernet Mezzanine is an add-on/expansion board for SoC based development platforms designed to
the 96Boards specification. The mezzanine card has 4x Texas Instruments DP83867 Gigabit Ethernet PHYs to provide
4 ports of gigabit Ethernet connectivity to the carrier development platform.

Fig. 1.1: 96B Quad Ethernet Mezzanine on the Ultra96

1

96B Quad Ethernet Mezzanine

2 Chapter 1. Description

CHAPTER

TWO

FEATURES

• 4x TI DP83867 Gigabit Ethernet PHYs

• Quad Ethernet RJ45 with magnetics

• Power and reset pushbuttons

• Low-speed expansion connector for stacking

• Supports the Avnet Ultra96 v1 and v2 dev platforms

• Example designs for Vivado

• Standalone and PetaLinux example designs

3

http://www.ti.com/product/DP83867CS
https://www.96boards.org/product/ultra96/

96B Quad Ethernet Mezzanine

4 Chapter 2. Features

CHAPTER

THREE

WHERE TO BUY

The mezzanine card can be purchased from Opsero’s online shop at the link below:

96B Quad Ethernet Mezzanine order page

3.1 Pin Configuration

The 96B Quad Ethernet Mezzanine has both the low-speed and high-speed expansion connectors as defined by the
96Boards Consumer Edition specification. The following tables define the pinout of those connectors for this mezza-
nine card.

3.1.1 Low-speed expansion header

The low-speed expansion header connects the main power supply (SYS_DCIN) to the mezzanine card and it also
provides I/Os that are used for the MDIO bus, the PHY resets and the “power good” signals from the mezzanine card’s
switching regulators.

Only 9 I/O pins of the low-speed expansion header are used by the 96B Quad Ethernet Mezzanine card. The others are
directly passed through to the expansion socket on the top side of the board which can be used for stacking a second
mezzanine card. See the following section for the pinout of the low-speed expansion socket.

The mezzanine card does not draw power from the +5V pin (37). This pin is directly passed through to the expansion
socket on the top side of the board.

The mezzanine card does not draw power from the 1.8V supply pin (35), but it does use this pin to detect power-up
of the carrier board. To supply +1.8V power to the Ethernet PHYs, the mezzanine card generates it’s own +1.8VDC
supply using an on-board switching regulator that is powered by SYS_DCIN (the main supply). The +1.8VDC that is
generated on the mezzanine card is also passed through to the top-side expansion socket to provide power to a stacked
mezzanine if required.

5

https://opsero.com/product/96b-quad-ethernet-mezzanine/

96B Quad Ethernet Mezzanine

96Boards
pin name

Pin Description

96Boards
pin name

Pin Description

GND 1 Ground GND 2 Ground
UART0_CTS 3 Passed through PWR_BTN_N 4 Passed through
UART0_TXD 5 Passed through RST_BTN_N 6 Passed through
UART0_RXD 7 Passed through SPI0_SCL 8 Passed through
UART0_RTS 9 Passed through SPI0_DIN 10 Passed through
UART1_TXD 11 Passed through SPI0_CS 12 Passed through
UART1_RXD 13 Passed through SPI0_DOUT 14 Passed through
I2C0_SCL 15 Passed through PCM_FS 16 Passed through
I2C0_SDA 17 Passed through PCM_CLK 18 Passed through
I2C1_SCL 19 Passed through PCM_DO 20 Passed through
I2C1_SDA 21 Passed through PCM_DI 22 Passed through
GPIO-A 23 Passed through GPIO-B 24 Passed through
GPIO-C 25 Passed through GPIO-D 26

POWER
GOOD 1.0V
(1.8V logic)

GPIO-E 27

POWER
GOOD 2.5V
(1.8V logic)

GPIO-F 28

POWER
GOOD 1.8V
(1.8V logic)

GPIO-G 29

Port 0 PHY
reset
(active low)

GPIO-H 30

Port 1 PHY
reset
(active low)

GPIO-I 31

Port 2 PHY
reset
(active low)

GPIO-J 32

Port 3 PHY
reset
(active low)

GPIO-K 33 MDIO data sig-
nal

GPIO-L 34 MDC clock sig-
nal

+1V8 35

+1.8V supply
from dev
platform

SYS_DCIN 36 Main power
supply

+5V 37

+5.0V supply
from dev
platform
Passed through

SYS_DCIN 38 Main power
supply

GND 39 Ground GND 40 Ground6 Chapter 3. Where to buy

96B Quad Ethernet Mezzanine

3.1.2 Low-speed expansion socket

The low-speed expansion socket is on the top-side of the mezzanine card and can be used for stacking a second
mezzanine card. It provides access to all of the I/O that the 96B Quad Ethernet mezzanine does not use, and all of the
power supplies.

In the table below, all of the pins with the description “Passed through” can be used by the stacked mezzanine card.
The specific usage of the pins will depend on the development platform being used.

Note: The +1.8V power supply pin (35) is connected to the +1.8V that is generated by a switching regulator on
the 96B Quad Ethernet Mezzanine, it is not passed through from the development platform. This allows the stacked
mezzanine to draw 100mA or more from the supply.

96Boards
pin name

Pin Description

96Boards
pin name

Pin Description

GND 1 Ground GND 2 Ground
UART0_CTS 3 Passed through PWR_BTN_N 4 Passed through
UART0_TXD 5 Passed through RST_BTN_N 6 Passed through
UART0_RXD 7 Passed through SPI0_SCL 8 Passed through
UART0_RTS 9 Passed through SPI0_DIN 10 Passed through
UART1_TXD 11 Passed through SPI0_CS 12 Passed through
UART1_RXD 13 Passed through SPI0_DOUT 14 Passed through
I2C0_SCL 15 Passed through PCM_FS 16 Passed through
I2C0_SDA 17 Passed through PCM_CLK 18 Passed through
I2C1_SCL 19 Passed through PCM_DO 20 Passed through
I2C1_SDA 21 Passed through PCM_DI 22 Passed through
GPIO-A 23 Passed through GPIO-B 24 Passed through
GPIO-C 25 Passed through GPIO-D 26 Not connected
GPIO-E 27 Not connected GPIO-F 28 Not connected
GPIO-G 29 Not connected GPIO-H 30 Not connected
GPIO-I 31 Not connected GPIO-J 32 Not connected
GPIO-K 33 Not connected GPIO-L 34 Not connected
+1V8 35

+1.8V supply
from
96B Eth
mezzanine

SYS_DCIN 36 Main power
supply Passed
through

+5V 37

+5.0V supply
from dev
platform
Passed through

SYS_DCIN 38 Main power
supply Passed
through

GND 39 Ground GND 40 Ground

3.1. Pin Configuration 7

96B Quad Ethernet Mezzanine

3.1.3 High-speed expansion connector

The high-speed expansion connector routes the SGMII input (Soc-to-PHY) and output (PHY-to-SoC) signals to the
development platform. It also routes the SGMII 625MHz clock (input to SoC), which is generated by the PHY
connected to port 3, and is typically used by the SGMII receiver.

Also routed through the high-speed connector are 2 configurable outputs of the DP83867 PHYs called “GPIO0” and
“GPIO1”. These can be used for start-of-packet detection, loss of sync detection, and receive error detection among
other things. Please refer to the datasheet of the DP83867 for more detailed information on these pins and their
function.

96Boards
pin name

Pin Description
96Boards
pin name

Pin Description

SD_DAT0/SPI1_DOUT1 Not used CSI0_C+ 2 Port 0 SGMII
output data+

SD_DAT1 3 Not used CSI0_C- 4 Port 0 SGMII
output data-

SD_DAT2 5 Not used GND 6 Ground
SD_DAT3/SPI1_CS7 Not used CSI0_D0+ 8 Port 1 SGMII

output data+
SD_SCLK/SPI1_SCLK9 Not used CSI0_D0- 10 Port 1 SGMII

output data-
SD_CMD/SPI1_DIN11 Not used GND 12 Ground
GND 13 Ground CSI0_D1+ 14 Port 1 GPIO1

(1.2V output)
CLK0/CSI0_MCLK15 Not used CSI0_D1- 16 Port 1 GPIO0

(1.2V output)
CLK1/CSI1_MCLK17 Not used GND 18 Ground
GND 19 Ground CSI0_D2+ 20 Port 0 SGMII

input data+
DSI_CLK+ 21 Port 3 SGMII

input data+
CSI0_D2- 22 Port 0 SGMII

input data-
DSI_CLK- 23 Port 3 SGMII

input data-
GND 24 Ground

GND 25 Ground CSI0_D3+ 26 Port 1 SGMII
input data+

DSI_D0+ 27 Port 2 SGMII
output data+

CSI0_D3- 28 Port 1 SGMII
input data-

DSI_D0- 29 Port 2 SGMII
output data-

GND 30 Ground

GND 31 Ground I2C2_SCL 32 Not used
DSI_D1+ 33 Port 0 GPIO1

(1.2V output)
I2C2_SDA 34 Not used

DSI_D1- 35 Port 0 GPIO0
(1.2V output)

I2C3_SCL 36 Not used

GND 37 Ground I2C3_SDA 38 Not used
DSI_D2+ 39 Port 3 GPIO0

(1.2V output)
GND 40 Ground

DSI_D2- 41 Port 3 GPIO1
(1.2V output)

CSI1_D0+ 42 SGMII 625MHz
clock+

Continued on next page

8 Chapter 3. Where to buy

http://www.ti.com/product/DP83867CS

96B Quad Ethernet Mezzanine

Table 3.1 – continued from previous page

96Boards
pin name

Pin Description
96Boards
pin name

Pin Description

GND 43 Ground CSI1_D0- 44 SGMII 625MHz
clock-

DSI_D3+ 45 Port 2 SGMII
input data+

GND 46 Ground

DSI_D3- 47 Port 2 SGMII
input data-

CSI1_D1+ 48 Port 2 GPIO1
(1.2V output)

GND 49 Ground CSI1_D1- 50 Port 2 GPIO0
(1.2V output)

USB_D+ 51 Not used GND 52 Ground
USB_D- 53 Not used CSI1_C+ 54 Port 3 SGMII

output data+
GND 55 Ground CSI1_C- 56 Port 3 SGMII

output data-
HSIC_STR 57 Not used GND 58 Ground
HSIC_DATA 59 Not used RESERVED 60 Not used

3.2 Specifications

3.2.1 Recommended Operating Conditions

MIN TYP MAX UNIT
Supply voltage SYS_DCIN +8 +12 +17 V
Output current

+1V8 (pin 35)
Low-speed
expansion
socket

0 200 mA

3.2.2 Power Consumption

The specifications below refer to the total power consumption of the mezzanine card and the carrier board combined.
It is important to note that the use of the mezzanine will affect the power consumption of the SoC on the carrier board.
This is due to the peripherals and IP that must be enabled on the SoC to interface with the Ethernet PHYs. Also note
that the total power consumption is dependent on the ambient temperature and channel utilization.

Ultra96-v1

SYS_DCIN UTILIZATION MIN TYP MAX UNIT
Current draw 16 VDC 100% 510 mA

12 VDC 100% 645 mA
8 VDC 100% 935 mA

3.2. Specifications 9

96B Quad Ethernet Mezzanine

• Tests performed at ambient temperature of 25 degrees C

• Tests performed using IP in the FPGA to generate the Ethernet packets

Ultra96-v2

SYS_DCIN UTILIZATION MIN TYP MAX UNIT
Current draw 16 VDC 100% 550 mA

12 VDC 100% 710 mA
8 VDC 100% 1050 mA

• Tests performed at ambient temperature of 25 degrees C

• Tests performed using IP in the FPGA to generate the Ethernet packets

3.2.3 Reset Timing

When hardware resetting the PHYs, we recommend using this timing:

1. Hold the RESET_N signal LOW for 10ms

2. Release the RESET_N signal (HIGH) and wait for 5ms

3.2.4 MDIO Timing

• The maximum MDC frequency supported by the DP83867 PHY is 25MHz.

3.2.5 DP83867 Electrical and Timing

For electrical specs and timing related to the DP83867 signals listed below, please refer to the DP83867 datasheet:

• Reset

• SGMII

• GPIO0 and GPIO1

• MDIO

• Start-of-Frame detect

3.2.6 Certifications

• RoHS

• CE

3.3 Detailed Description

3.3.1 Hardware Overview

The figure below illustrates the various hardware components that are located on the top-side of the 96B Quad Ethernet
Mezzanine card.

10 Chapter 3. Where to buy

http://www.ti.com/product/DP83867CS

96B Quad Ethernet Mezzanine

Fig. 3.1: Mezzanine card labelled top-side

3.3. Detailed Description 11

96B Quad Ethernet Mezzanine

The main components on the top-side of the mezzanine card are:

• 4x TI DP83867 Gigabit Ethernet PHYs

• 40-pin low-speed expansion socket for stacking a second mezzanine

• Power and reset pushbuttons

• 25MHz crystal

• Switching regulators for +1.0V, +1.8V and +2.5V

• Quad-port RJ45 connector

The figure below illustrates the various hardware components that are located on the bottom-side of the mezzanine
card.

Fig. 3.2: Mezzanine card labelled bottom-side

The main components on the bottom-side of the mezzanine card are:

• 40-pin low-speed expansion header

• Decoupling capacitors for the DP83867 Ethernet PHYs

• 60-pin high-speed expansion header

3.3.2 TI DP83867 Gigabit Ethernet PHY

There are 4x TI DP83867 Gigabit Ethernet PHYs on the mezzanine card, one for each of the four Gigabit Ethernet
ports. For interfacing with a MAC, the DP83867 has both RGMII and SGMII interfaces, however the mezzanine card
only uses the SGMII interface of each PHY. The DP83867 is designed for low-power, it has low-latency and it provides
IEEE 1588 Start of Frame Detection. For more specific information on the DP83867, please refer to the datasheet.

12 Chapter 3. Where to buy

http://www.ti.com/product/DP83867CS

96B Quad Ethernet Mezzanine

In this documentation, we will refer to the PHYs as PHY0, PHY1, PHY2 and PHY3, corresponding to their placement
from left-to-right and as shown in Fig. 3.1.

3.3.3 Low-speed expansion connectors

The 96B Quad Ethernet Mezzanine has two low-speed expansion connectors: a pin header on the bottom-side, and
a pin socket on the top-side. The pin header interfaces with the development platform, while the pin socket is used
for “stacking” a second mezzanine card on top of the 96B Quad Ethernet Mezzanine. The figure below illustrates the
connections to the low-speed expansion pin header (bottom side) and socket (top side).

Fig. 3.3: Low-speed expansion and stacking connectors

Bottom-side low-speed expansion pin header

The 96B Quad Ethernet Mezzanine has a 40-pin low-speed expansion pin header, located on the bottom side of the
board (see Fig. 3.2). This pin header connects directly to the development platform and it provides the main power
supply to the 96B Quad Ethernet Mezzanine card as well as various I/O signals used by the mezzanine:

• SYS_DCIN (the main power supply)

3.3. Detailed Description 13

96B Quad Ethernet Mezzanine

• Power and reset pushbuttons

• MDIO and MDC signals for the Ethernet PHYs

• Reset signals for the Ethernet PHYs

• Power good signals from the switching regulators

Top-side low-speed expansion socket

Not all of the I/Os on the low-speed expansion header are used by the 96B Quad Ethernet Mezzanine card. To make
these unused I/Os accessible to another mezzanine card, the 96B Quad Ethernet Mezzanine was designed with a 40-
pin low-speed expansion socket, located on the top-side of the board (see Fig. 3.1). This expansion socket connects
to all of the unused I/Os of the 96B Quad Ethernet Mezzanine, as well as the power/reset pushbuttons and the power
supplies. It is designed to allow a standard 96Boards mezzanine card to be “stacked” on top of the 96B Quad Ethernet
Mezzanine.

There are 21 unused I/Os that are passed through from the low-speed header to the low-speed socket and can be used
by a “stacked” (2nd) mezzanine:

• UART0_CTS,TXD,RXD,RTS

• UART1_TXD,RXD

• I2C0_SCL,SDA

• I2C1_SCL,SDA

• SPI0_SCL,DIN,CS,DOUT

• PCM_FS,CLK,DO,DI

• GPIO-A,B,C

All power supply pins SYS_DCIN, +5V and +1V8 are connected to the appropriate supplies however only SYS_DCIN
and +5V are directly passed through from the bottom-side low-speed expansion header. The +1V8 power supply is
instead connected to the +1.8V that is generated by the 96B Quad Ethernet Mezzanine’s on-board switching regulator.
This allows the “stacked” mezzanine card to draw more than the standard’s 100mA limit from the +1.8V supply.

The POWER and RESET pushbuttons are directly passed through.

3.3.4 High-speed expansion connector

The 96B Quad Ethernet Mezzanine has a 60-pin high-speed expansion header for interfacing with high-speed I/Os on
the development platform. The mezzanine uses most of these I/Os for interfacing the SGMII links and the GPIO0/1
outputs of the DP83867 PHYs.

Each SGMII link is composed of two differential pairs, one for the transmit signal and one for the receive signal. These
links typically operate at 1.25Gbps in each direction. These differential pairs are routed on the 96B Quad Ethernet
Mezzanine with a controlled differential impedance of 100 ohms.

The DP83867 PHYs have two outputs, named GPIO0 and GPIO1, that can be used for Start of Frame detection among
other things (see datasheet for details). Both of these outputs are routed through the high-speed expansion header so
that they can be used by the development platform.

3.3.5 Power Supplies

The 96B Quad Ethernet Mezzanine has three switching regulators that generate the supply voltages required by the TI
DP83867 Gigabit Ethernet PHYs (+1.0V, +1.8V and +2.5V). The switching regulators are all fed by the SYS_DCIN

14 Chapter 3. Where to buy

http://www.ti.com/product/DP83867CS

96B Quad Ethernet Mezzanine

Fig. 3.4: High-speed expansion connector

main supply voltage that is provided by the development platform through the low-speed expansion connector. The
96B Quad Ethernet Mezzanine can accept a SYS_DCIN input supply voltage of +8VDC to +17VDC, although it is
recommended that a +12VDC supply be used.

Power Sequencing

The SYS_DCIN voltage is always present as long as the power supply is connected to the development platform,
and even when the development platform is turned OFF. To prevent the switching regulators from running when the
development platform is turned OFF, the 96B Quad Ethernet Mezzanine uses the ENABLE inputs of the switching
regulators. The signal used to ENABLE the switching regulators is the +1V8 supply pin of the low-speed expansion
connector.

The power sequencing of the switching regulators was designed to meet the requirements of the DP83867 PHY and is
as follows:

1. The power supply is connected to the development platform and the SYS_DCIN voltage rises to +12VDC
(+12VDC expected, +8-17VDC accepted).

2. The development platform is turned ON, and the +1V8 pin of the low-speed expansion connector rises to +1.8V.

3. The +1.0V and +1.8V switching regulators are enabled by the +1V8 pin, and their respective POWER GOOD
signals are asserted.

4. The +2.5V regulator is enabled by the POWER GOOD signal of the +1.8V switching regulator and it’s POWER
GOOD signal is asserted.

3.3. Detailed Description 15

96B Quad Ethernet Mezzanine

Fig. 3.5: Power supplies

16 Chapter 3. Where to buy

96B Quad Ethernet Mezzanine

Power good signals

To enable diagnostic checking of the 96B Quad Ethernet Mezzanine power supplies, each of the POWER GOOD
signals are connected to the low-speed expansion connector. They are connected to the following pins:

• Power good +1.0V: Pin 26, GPIO-D

• Power good +1.8V: Pin 28, GPIO-F

• Power good +2.5V: Pin 27, GPIO-E

Stacking socket +1V8

The +1V8 supply pin of the low-speed stacking socket (intended for “stacking” a 2nd mezzanine card on top of the 96B
Quad Ethernet Mezzanine) is connected to the +1.8V supply that is generated by the on-board switching regulator. The
mezzanine was designed this way to allow the “stacked” mezzanine card to draw more than 100mA from the +1.8V
supply, the maximum current that many 96Boards development platforms are designed to support.

Note that the SYS_DCIN and +5V supply pins of the low-speed stacking socket are connected directly to the associated
pins on the low-speed expansion header on the bottom-side of the board.

3.3.6 Clocks

The figure below illustrates the clock connections on the 96B Quad Ethernet Mezzanine.

Each of the 4x DP83867 PHYs requires an input clock of 25MHz that can either be provided by a crystal, by a clock
generator or by the CLK_OUT pin of another DP83867 device. To provide the 25MHz clock to all devices, the 96B
Quad Ethernet Mezzanine connects a crystal to PHY3, and the CLK_OUT output of that PHY is used to drive the clock
inputs of the 3 other PHYs. For hardware verification, the CLK_OUT output of each PHY is connected to a testpoint
that can be probed on the top-side of the mezzanine card. Note that the CLK_OUT output pin of the DP83867 can be
configured to output other signals/frequencies, however for the correct operation of the 96B Quad Ethernet Mezzanine,
the default configuration of a 25MHz output should not be changed.

The DP83867 PHYs each have the ability to generate a 625MHz output clock that can be used by the SGMII receiver.
The 96B Quad Ethernet Mezzanine routes only one of these clock outputs to the high-speed expansion connector, the
one generated by PHY3. Note that this clock output is not enabled by default and must be enabled via the MDIO bus
if required by the development platform.

3.3.7 Resets

The DP83867 Ethernet PHYs each have a hardware reset pin (RESET_N) that is routed separately to the low-speed
expansion connector (see Fig. 3.3 for details). The reset pin must be driven by the development platform with an
active-low signal. There are no pull-up resistors connected to the reset signals on the 96B Quad Ethernet Mezzanine
card, however the DP83867 devices have pull-up resistors internal to the device. We recommend always driving the
reset pins from the development platform in order to ensure reliable reset behavior.

3.3.8 PHY Configuration

Configuration of the PHY by software is performed using the MDIO bus. The MDIO bus consists of two signals:
a bidirectional data signal (MDIO) and a clock signal (MDC). The data signal (MDIO) is driven by the master and
slaves as an open drain output, and it is connected to a pull-up resistor located on the mezzanine card. The clock signal
(MDC) is driven by the master only (the SoC on the development platform) and it does not require a pull-up resistor.
For more information on the MDIO serial bus standard, please refer to the Wikipedia page on MDIO.

3.3. Detailed Description 17

https://en.wikipedia.org/wiki/Management_Data_Input/Output

96B Quad Ethernet Mezzanine

Fig. 3.6: Clocks

18 Chapter 3. Where to buy

96B Quad Ethernet Mezzanine

All of the 4 Ethernet PHYs are connected in a chain configuration to a single MDIO bus. Each PHY has it’s own
unique “PHY address” which is used when targetting the PHY on the MDIO bus. The diagram below illustrates the
MDIO bus architecture and it’s connection between the low-speed expansion connector and the Ethernet PHYs.

Fig. 3.7: MDIO bus architecture

As illustrated in the diagram, each PHY has a unique address that must be used when communicating with the PHYs
over the MDIO bus. The PHY addresses are as follows:

• PHY0 (Port 0): PHY address 0x01

• PHY1 (Port 1): PHY address 0x03

• PHY2 (Port 2): PHY address 0x0C

• PHY3 (Port 3): PHY address 0x0F

3.4 Mechanical Information

3.4.1 Dimensions

The mechanical dimensions of the 96B Quad Ethernet Mezzanine card are illustrated in the figure below. All dimen-
sions are in millimeters (mm).

The assembly drawing above is also available as a PDF at the link below:

96B Quad Ethernet Mezzanine Rev-A Assembly Drawing

3.4. Mechanical Information 19

http://ethernet96.com/download/96BQuadEth_ASSM_RevA.PDF

96B Quad Ethernet Mezzanine

Fig. 3.8: 96B Quad Ethernet Mezzanine mechanical drawing

20 Chapter 3. Where to buy

96B Quad Ethernet Mezzanine

3.4.2 3D Model

The 3D model of the board is available as a STEP file at the link below:

96B Quad Ethernet Mezzanine Rev-A 3D STEP model

3.5 Getting Started

3.5.1 Example Designs

The example designs for the 96B Quad Ethernet Mezzanine are hosted on Github and are designed for the Avnet
Ultra96 development platform. There are currently two examples and they are differentiated by the type of Ethernet
MACs used and their location in the system.

AXI Ethernet based example

This example design is based on Xilinx’s soft (ie. FPGA implemented) MAC, the AXI Ethernet Subsystem IP, that
can be found in the Vivado IP Catalog. As the MAC is implemented in the FPGA fabric, this example is ideal for
applications that require some packet processing to be performed in the FPGA.

PS GEM based example

This example design utilizes the 4x Gigabit Ethernet MACs (GEMs) that are embedded into the Processing System
(PS) of the Zynq Ultrascale+™ device of the Ultra96. The MACs in this example design do not use up any of the
FPGA fabric, which makes it ideal for applications that need to use the FPGA for other purposes.

3.5.2 Requirements

In order to use the example designs, you will need the following:

• Windows or Linux PC

• Xilinx Vivado

• Xilinx Vitis

• 1x Ultra96 development platform

• 1x 96B Quad Ethernet Mezzanine

If you want to build PetaLinux for the example designs, you will also need:

• Linux PC or a virtual Linux machine

• PetaLinux SDK

You will also need a CAT-5e Ethernet cable and a link partner, such as a PC with an Ethernet port or a network router.

Additionally, you may need to install the Ultra96 board definition files to your Vivado installation, and obtain an AXI
Ethernet evaluation license if you intend to use that design.

3.5. Getting Started 21

http://ethernet96.com/download/96BQuadEthernetRevA-3D.zip

96B Quad Ethernet Mezzanine

Install Ultra96 board definition files

To use the example projects, you must first install the board definition files for the Ultra96 into your Vivado and Vitis
installation. The Ultra96 board definition files are hosted on Avnet’s Github repo.

Clone or download that repo, then copy the ultra96v1 and ultra96v2 directories from it to the fol-
lowing directories on your machine: * <path-to-xilinx-vivado>/data/boards/board_files *
<path-to-xilinx-vitis>/data/boards/board_files

AXI Ethernet evaluation license

If you intend to build the AXI Ethernet based design, you will need to get an evaluation (or full) license for the
Tri-mode Ethernet MAC from Xilinx. You can find instructions for that here: Xilinx Soft TEMAC license

3.5.3 Build instructions

Download the source code

The source code for both example designs can be found on our Github page:

96B Quad Ethernet Mezzanine Github page

The repository contains the following directories:

• Vivado: Contains the scripts to build the Vivado projects

• Vitis: Contains a script to generate and build the standalone software applications

• PetaLinux: Contains a script and configuration files to build the PetaLinux projects

• EmbeddedSw: Contains modifications to the lwIP software library

Build the Vivado and Vitis projects

Once you have installed the board definition files, and you have installed the required licenses, then you can use the
sources in this repository to build the Vivado, Vitis and PetaLinux projects. Start by cloning the repo or download it
as a zip file and extract the files to your hard drive, then follow these steps depending on your OS:

Windows users

1. Open Windows Explorer, browse to the repo files on your hard drive.

2. In the Vivado directory, you will find multiple batch files (*.bat). Double click on the batch file of the example
project that you would like to generate - this will generate a Vivado project.

3. You will be asked to select between Ultra96 v1 and v2. It is important to select the correct version of the Ultra96
that you are using. Type 1 or 2 (for v1 or v2) and press ENTER. The script will now generate the Vivado project
for your board.

4. Run Vivado and open the project that was just created.

5. Click Generate bitstream.

6. When the bitstream is successfully generated, select “File->Export->Export Hardware”. In the window that
opens, tick “Include bitstream” and “Local to project”.

7. Return to Windows Explorer and browse to the Vitis directory in the repo.

22 Chapter 3. Where to buy

https://github.com/Avnet/bdf
http://ethernetfmc.com/getting-a-license-for-the-xilinx-tri-mode-ethernet-mac/
https://github.com/fpgadeveloper/ethernet96

96B Quad Ethernet Mezzanine

8. Double click the build-vitis.bat batch file. The batch file will run the build-vitis.tcl script and build the Vitis
workspace containing the hardware design and the software application. Please refer to the “README.md” file
in the Vitis subdirectory for instructions on running the software application on hardware.

9. If you are interested in building PetaLinux, you will need to use a Linux machine and follow the steps for Linux
users below.

Linux users

1. Launch the Vivado GUI.

2. On the welcome page, there is a Tcl console. In the Tcl console, cd to the repo files on your hard drive and into
the Vivado subdirectory. For example: cd /media/projects/ethernet96/Vivado.

3. Specify the version of Ultra96 you want to build the project for (v1 or v2) by using one of the following
commands: set argv {1} for v1, or set argv {2} for v2.

4. In the Vivado subdirectory, you will find multiple Tcl files. To list them, type exec ls {*}[glob

*.tcl]. Determine the Tcl script for the example project that you would like to generate (for ex-
ample: build-ps-gem.tcl), then source the script in the Tcl console: For example: source
build-ps-gem.tcl

5. Vivado will run the script and generate the project. When it’s finished, click Generate bitstream.

6. When the bitstream is successfully generated, select “File->Export->Export Hardware”. In the window that
opens, tick “Include bitstream” and “Local to project”.

7. To build the Vitis workspace, open a Linux command terminal and cd to the Vitis directory in the repo.

8. The Vitis directory contains the build-vitis.tcl script that will build the Vitis workspace contain-
ing the hardware design and the software application. Run the build script by typing the following
command: <path-of-xilinx-vitis>/bin/xsct build-vitis.tcl Note that you must replace
<path-of-xilinx-vitis> with the actual path to your Vitis installation.

9. Please refer to the “README.md” file in the Vitis subdirectory for instructions on running the software appli-
cation on hardware.

10. To build the PetaLinux project, follow the steps in the following section.

Build the PetaLinux projects

Once the Vivado project(s) have been built and exported, you can now build the PetaLinux project(s).

Note: The PetaLinux projects can only be built on a Linux machine (or virtual Linux machine).

Linux users

1. To build the PetaLinux project, first launch PetaLinux by sourcing the “settings.sh” bash script, eg: source
<path-to-installed-petalinux>/settings.sh.

2. Now cd to the PetaLinux directory in the repo and run the build-petalinux script. You may have to
add execute permission to the script first using chmod +x build-petalinux, then run it by typing ./
build-petalinux.

3.5. Getting Started 23

96B Quad Ethernet Mezzanine

Warning: UNIX line endings: The scripts and files in the PetaLinux directory of this repository must have UNIX
line endings when they are executed or used under Linux. The best way to ensure UNIX line endings, is to clone
the repo directly onto your Linux machine. If instead you have copied the repo from a Windows machine, the files
will have DOS line endings and you must use the dos2unix tool to convert the line endings for UNIX.

3.5.4 Launch on hardware

Echo server via JTAG

1. Open Vitis.

2. Power up your hardware platform and ensure that the JTAG is connected properly.

3. Select “Xilinx Tools->Program FPGA”. In the “Program FPGA” dialog box that appears, select the “Hardware
Platform” that you want to run, this will correspond to name of the Vivado project that you built earlier.

4. Click on the software application that you want to run, it should be the one with the postfix “_echo_system”.

5. Open the drop-down menu of the “Run” button (play) on the toolbar. Select “Run Configurations”, then in the
dialog box that appears, double-click on the option “Single Application Debug”. This will create a new run
configuration for the application.

6. Select the new run configuration and click “Run”.

PetaLinux via JTAG

To launch the PetaLinux project on hardware via JTAG, connect and power up your hardware and then use the follow-
ing commands in a Linux command terminal:

1. Change current directory to the PetaLinux project directory: cd <petalinux-project-dir>

2. Download bitstream to the FPGA: petalinux-boot --jtag --fpgaNote that you don’t have to specify
the bitstream because this command will use the one that it finds in the ./images/linux directory.

3. Download the PetaLinux kernel to the FPGA: petalinux-boot --jtag --kernel

PetaLinux via SD card

To boot PetaLinux on hardware via SD card:

1. The SD card must first be prepared with two partitions: one for the boot files and another for the root file system.

• Plug the SD card into your computer and find it’s device name using the dmesg command. The SD card
should be found at the end of the log, and it’s device name should be something like /dev/sdX, where X
is a letter such as a,b,c,d, etc. Note that you should replace the X in the following instructions.

• Run fdisk by typing the command sudo fdisk /dev/sdX

• Make the boot partition: typing n to create a new partition, then type p to make it primary, then use the
default partition number and first sector. For the last sector, type +1G to allocate 1GB to this partition.

• Make the boot partition bootable by typing a

• Make the root partition: typing n to create a new partition, then type p to make it primary, then use the
default partition number, first sector and last sector.

• Save the partition table by typing w

24 Chapter 3. Where to buy

96B Quad Ethernet Mezzanine

• Format the boot partition (FAT32) by typing sudo mkfs.vfat -F 32 -n boot /dev/sdX1

• Format the root partition (ext4) by typing sudo mkfs.ext4 -L root /dev/sdX2

2. Copy the following files to the boot partition of the SD card: Assuming the boot partition was mounted to
/media/user/boot, follow these instructions:

$ cd /media/user/boot/
$ sudo cp /<petalinux-project>/images/linux/BOOT.bin .
$ sudo cp /<petalinux-project>/images/linux/boot.scr .
$ sudo cp /<petalinux-project>/images/linux/image.ub .

3. Create the root file system by extracting the rootfs.tar.gz file to the root partition. Assuming the root
partition was mounted to /media/user/root, follow these instructions:

$ cd /media/user/root/
$ sudo cp /<petalinux-project>/images/linux/rootfs.tar.gz .
$ sudo tar xvf rootfs.tar.gz -C .
$ sync

Once the sync command returns, you will be able to eject the SD card from the machine.

4. Connect and power your hardware.

3.5.5 Echo Server Example Usage

Default IP address

The echo server is designed to attempt to obtain an IP address from a DHCP server. This is useful if the echo server is
connected to a network. Once the IP address is obtained, it is printed out in the UART console output.

If instead the echo server is connected directly to a PC, the DHCP attempt will fail and the echo server will default to
the IP address 192.168.1.10. To be able to communicate with the echo server from the PC, the PC should be configured
with a fixed IP address on the same subnet, for example: 192.168.1.20.

Ping the port

The echo server can be “pinged” from a connected PC, or if connected to a network, from another device on the
network. The UART console output will tell you what the IP address of the echo server is. To ping the echo server,
use the ping command from a command console.

For example: ping 192.168.1.10

Change the targetted port

The echo server example design currently can only target one Ethernet port at a time. Selection of the Ethernet port
can be changed by modifying the defines contained in the platform_config.h file in the application sources. Set
PLATFORM_EMAC_BASEADDR to one of the following values:

For designs using the GEMs:

• Port 0: XPAR_XEMACPS_0_BASEADDR

• Port 1: XPAR_XEMACPS_1_BASEADDR

• Port 2: XPAR_XEMACPS_2_BASEADDR

• Port 3: XPAR_XEMACPS_3_BASEADDR

3.5. Getting Started 25

96B Quad Ethernet Mezzanine

For designs using AXI Ethernet:

• Port 0: XPAR_AXIETHERNET_0_BASEADDR

• Port 1: XPAR_AXIETHERNET_1_BASEADDR

• Port 2: XPAR_AXIETHERNET_2_BASEADDR

• Port 3: XPAR_AXIETHERNET_2_BASEADDR

3.5.6 PetaLinux Example Usage

In the PetaLinux projects, the Ethernet ports are assigned to the network interfaces eth0-eth3 as follows:

• eth0: Port 0

• eth1: Port 1

• eth2: Port 2

• eth3: Port 3

The following examples demonstrate how to use these network interfaces to configure the Ethernet ports for use in
PetaLinux.

Enable port

In this example we enable port 0 (eth0).

root@ps_gem:~# ifconfig eth0 up
[209.778955] TI DP83867 ff0b0000.mdio-mii:03: attached PHY driver [TI DP83867] (mii_
→˓bus:phy_addr=ff0b0000.mdio-mii:03, irq=POLL)
[209.793249] pps pps1: new PPS source ptp1
[209.797193] macb ff0b0000.ethernet: gem-ptp-timer ptp clock registered.
[209.803995] IPv6: ADDRCONF(NETDEV_UP): eth0: link is not ready
[213.868935] macb ff0b0000.ethernet eth0: link up (1000/Full)
[213.874547] IPv6: ADDRCONF(NETDEV_CHANGE): eth0: link becomes ready

Enable port with fixed IP address

In this example we enable port 1 (eth1) with a fixed IP address.

root@ps_gem:~# ifconfig eth1 192.168.2.19 up
[209.778955] TI DP83867 ff0b0000.mdio-mii:03: attached PHY driver [TI DP83867] (mii_
→˓bus:phy_addr=ff0b0000.mdio-mii:03, irq=POLL)
[209.793249] pps pps1: new PPS source ptp1
[209.797193] macb ff0c0000.ethernet: gem-ptp-timer ptp clock registered.
[209.803995] IPv6: ADDRCONF(NETDEV_UP): eth1: link is not ready
[213.868935] macb ff0c0000.ethernet eth1: link up (1000/Full)
[213.874547] IPv6: ADDRCONF(NETDEV_CHANGE): eth1: link becomes ready

Check status of a port with ethtool

In this example we check the status of port 2 (eth2) with “ethtool”.

26 Chapter 3. Where to buy

96B Quad Ethernet Mezzanine

root@ps_gem:~# ethtool eth2
Settings for eth2:

Supported ports: [TP MII]
Supported link modes: 10baseT/Half 10baseT/Full

100baseT/Half 100baseT/Full
1000baseT/Half 1000baseT/Full

Supported pause frame use: No
Supports auto-negotiation: Yes
Advertised link modes: 10baseT/Half 10baseT/Full

100baseT/Half 100baseT/Full
1000baseT/Half 1000baseT/Full

Advertised pause frame use: No
Advertised auto-negotiation: Yes
Link partner advertised link modes: 10baseT/Half 10baseT/Full

100baseT/Half 100baseT/Full
1000baseT/Full

Link partner advertised pause frame use: No
Link partner advertised auto-negotiation: Yes
Speed: 1000Mb/s
Duplex: Full
Port: MII
PHYAD: 1
Transceiver: internal
Auto-negotiation: on
Link detected: yes

Ping link partner using specific port

In this example we ping the link partner from port 1 (eth1).

root@ps_gem:~# ping -I eth1 192.168.1.10
PING 192.168.1.10 (192.168.1.10): 56 data bytes
64 bytes from 192.168.1.10: seq=0 ttl=128 time=0.939 ms
64 bytes from 192.168.1.10: seq=1 ttl=128 time=0.496 ms
64 bytes from 192.168.1.10: seq=2 ttl=128 time=0.486 ms
64 bytes from 192.168.1.10: seq=3 ttl=128 time=0.485 ms
64 bytes from 192.168.1.10: seq=4 ttl=128 time=0.501 ms
^C
--- 192.168.1.10 ping statistics ---
5 packets transmitted, 5 packets received, 0% packet loss
round-trip min/avg/max = 0.485/0.581/0.939 ms

Check port configuration

In this example we check the configuration of port 1 (eth1).

root@ps_gem:~# ifconfig eth1
eth1 Link encap:Ethernet HWaddr 00:0A:35:00:01:23

inet addr:192.168.1.11 Bcast:192.168.1.255 Mask:255.255.255.0
inet6 addr: fe80::20a:35ff:fe00:123%4294741717/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:148 errors:0 dropped:0 overruns:0 frame:0
TX packets:74 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000

(continues on next page)

3.5. Getting Started 27

96B Quad Ethernet Mezzanine

(continued from previous page)

RX bytes:17567 (17.1 KiB) TX bytes:12943 (12.6 KiB)
Interrupt:31

3.6 Board Setup

3.6.1 Mezzanine fastening hardware

For typical development use, in a lab or on a desk, the mating force of the expansion connectors alone is enough to
securly fix the mezzanine card to the carrier board. However, for applications requiring higher mechanical robustness,
the mezzanine can be fixed to the carrier board using 7mm standoffs and M2.5 machine screws. We suggest the
following part numbers, however equivalent parts can also be used:

• Hex standoff, Thread M2.5 x 0.45, Aluminium, Board-to-board length 7mm
Part number: M2102-2545-AL
Manufacturer: RAF Electronic Hardware

• Machine screw, Thread M2.5 x 0.45, Length (below head) 4mm, Stainless steel, Phillips head
Part number: 425-035
Supplier: Spaenaur

3.6.2 Stacking a second mezzanine

A second mezzanine card can be stacked on top of the 96B Quad Ethernet Mezzanine as shown in the image below.

The RJ45 connector (0826-1X4T-23-F) has a height of 13.59mm, while the expansion socket has a height of 4.5mm as
defined by the 96Boards spec. For this reason, an extender (see image below) is required for stacking most mezzanine
cards onto the 96B Quad Ethernet Mezzanine. The extender is a 40-pin pin socket with 8mm long pins that is inserted
into the 96B Quad Ethernet Mezzanine’s low-speed expansion socket, effectively increasing it’s height above that of
the RJ45 connector. The stacked mezzanine card is then plugged into the extender socket and sits comfortably above
the RJ45 connector. We recommend that the following connector be used as the extender socket, however equivalent
parts can also be used:

• 40-pin Pin socket with 8mm long pins
Part number: F263-1220A0BSYE1
Manufacturer: Yxcon

When using the extender socket recommended above, the stacked mezzanine sits at a height of 16mm above the 96B
Quad Ethernet Mezzanine, and it can be fixed to the mezzanine by using 16mm standoffs and M2.5 machine screws.
We suggest the following part numbers, however equivalent parts can also be used:

• Hex standoff, Thread M2.5 x 0.45, Aluminium, Board-to-board length 16mm
Part number: M2111-2545-AL
Manufacturer: RAF Electronic Hardware

• Machine screw, Thread M2.5 x 0.45, Length (below head) 4mm, Stainless steel, Phillips head
Part number: 425-035
Supplier: Spaenaur

The image below illustrates the use of the extender socket and 16mm standoffs.

28 Chapter 3. Where to buy

https://belfuse.com/resources/StewartConnector/0826-1X4T-23-F.pdf

96B Quad Ethernet Mezzanine

Fig. 3.9: 96B Quad Ethernet Mezzanine with stacked Sensors mezzanine (front)

3.6. Board Setup 29

96B Quad Ethernet Mezzanine

Fig. 3.10: Extender for stacking second mezzanine card

30 Chapter 3. Where to buy

96B Quad Ethernet Mezzanine

Fig. 3.11: 96B Quad Ethernet Mezzanine with stacked Sensors mezzanine (back)

3.6. Board Setup 31

96B Quad Ethernet Mezzanine

3.7 Programming Guide

This programming guide is specific to users of the Avnet Ultra96 board. The purpose of the guide is to provide the user
with the details of the programming requirements to enable them to operate the hardware and customise functionality.

3.7.1 Vivado design

We recommend that all users start with our example Vivado designs when using the mezzanine card with the Ultra96.
For those who wish to better understand the example designs, or develop their own Vivado designs, this section
provides more detail on the critical elements.

SGMII Implementation

The 96B Quad Ethernet Mezzanine card was designed to conform with the 96Boards specification for mezzanine
cards, however the pinout of the high-speed expansion connector was chosen to maximize its usability when paired
with the Ultra96. This section provides an explanation of the pin selection of the SGMII lanes and how to implement
the SGMII interfaces in the Vivado design.

The Ultra96 high-speed expansion connector does not provide access to any gigabit transceivers of the Zynq Ultra-
scale+ device. For this reason, the SGMII interfaces must be implemented using SGMII over LVDS. To implement
SGMII over LVDS on the Zynq Ultrascale+, the appropriate IP core is the PCS/PMA or SGMII IP. This IP core has
several requirements on the I/O pins with which it can be used. Two of the critical requirements are:

1. The I/O pair used for TX, and that used for RX must be in the same BYTE_GROUP

2. The I/O pair used for TX must be in the opposite nibble to that used for RX

For example, the TX and RX pairs of a single SGMII interface could be located in BYTE_GROUP 1, with the TX pair
in the lower nibble and the RX pair in the upper nibble.

Given these requirements, the possible pin selections can be determined by looking at the I/O pins that are available
to us, and their respective BYTE_GROUPs and nibbles. The high-speed expansion connector of the Ultra96 makes
these I/O pins from bank 65 available for use:

BYTE_GROUP Nibble Available bits (pairs)
0 Lower 0,1,2

Upper Not connected
1 Lower 0,1,2

Upper 0,1
2 Lower Not connected

Upper 0
3 Lower 0,1,2

Upper 0

Considering the requirements of the SGMII IP and the choice of I/O pins on the high-speed expansion connector of
the Ultra96, it is only possible to connect 3 SGMII interfaces:

• Interface 0: BYTE_GROUP 1, lower pair 0, upper pair 0

• Interface 1: BYTE_GROUP 1, lower pair 1, upper pair 1

• Interface 2: BYTE_GROUP 3, lower pair 0, upper pair 0

The 96B Quad Ethernet Mezzanine card has 4 SGMII interfaces. To connect the 4th interface to the Ultra96, we in
fact use two SGMII interfaces, where only one direction (TX/RX) of each interface is actually used. This allows us to

32 Chapter 3. Where to buy

https://github.com/fpgadeveloper/ethernet96
https://github.com/96boards/documentation/raw/master/mezzanine/files/mezzanine-design-guidelines.pdf
https://github.com/96boards/documentation/raw/master/mezzanine/files/mezzanine-design-guidelines.pdf

96B Quad Ethernet Mezzanine

satisfy the requirements of the SGMII IP with the remaining pins that are available to us. Here is how the 4th interface
is connected:

• Interface 3 RX: BYTE_GROUP 0, lower pair 0 (RX), upper pair 0 (N/C pins)

• Interface 3 TX: BYTE_GROUP 2, upper pair 0 (TX), lower pair 0 (N/C pins)

With this pin selection, the 4th interface requires two SGMII IPs to function - one that handles the RX interface and
another that handles the TX interface. The unused TX and RX pins of the SGMII IP cores are assigned to pins that are
not externally connected. To connect the GMII interface between the MAC IP and the two SGMII IP cores, we open
the interfaces and connect only the RX GMII pins to the RX SGMII core, and the TX GMII pins to the TX SGMII
core.

A single SGMII IP core implements all of the SGMII interfaces connected to a single BYTE_GROUP. As interfaces
0 and 1 are connected to BYTE_GROUP 1, they are implemented by a single SGMII IP core. Interface 2 has its own
SGMII IP core, as does interface 3’s RX lane and interface 3’s TX lane.

Note: It is possible to implement SGMII over LVDS using the AXI Ethernet Subsystem IP. However, at the time of
this writing, the AXI Ethernet Subsystem IP can only implement a single SGMII over LVDS interface. For this reason,
the IP cannot be used to implement both interface 0 and interface 1. Instead, to use both interfaces 0 and 1 with AXI
Ethernet Subsystem IP, the SGMII over LVDS interface must be implemented with the PCS/PMA or SGMII IP core,
and then connected to the AXI Ethernet Subsystem IP cores through internal GMII interfaces. See the AXI Ethernet
example design for the required connections.

MDIO bus

The 96B Quad Ethernet Mezzanine card uses a single MDIO bus to connect the development platform to the Eth-
ernet PHYs. The Vivado design should only contain one MDIO interface that connects to the external MDIO bus.
Communication with all Ethernet PHYs must be performed through this single bus.

The mezzanine card Ethernet PHYs for ports 0,1,2 and 3 have addresses 0x1, 0x2, 0xC and 0xF respectively. If your
Vivado design uses IP cores that themselves have PHY addresses (such as the PCS/PMA or SGMII IP), and connect
to the same MDIO bus as that of the external PHYs, ensure that these IP cores have unique addresses with respect to
the external PHYs.

If using the PCS/PMA or SGMII IP core, the MDIO interfaces of these cores can be chained together such that the
output of one connects to the input of another. Be sure to also connect the tri-state signal (MDIO_T) from one core to
the next, this is essential for correct operation of the MDIO bus.

EMIO GPIOs

In both the PS GEM and AXI Ethernet designs, the EMIO GPIOs are connected to the PHY resets and the PHY GPIOs
as shown in the table below:

3.7. Programming Guide 33

96B Quad Ethernet Mezzanine

EMIO
GPIO

PHY
Connection

GPIO
bank

GPIO
bit

Pin
mapping

0 PHY0 RESET_N 3 0 416
1 PHY1 RESET_N 3 1 417
2 PHY2 RESET_N 3 2 418
3 PHY3 RESET_N 3 3 419
4 PHY0 GPIO_0 3 4 420
5 PHY0 GPIO_1 3 5 421
6 PHY1 GPIO_0 3 6 422
7 PHY1 GPIO_1 3 7 423
8 PHY2 GPIO_0 3 8 424
9 PHY2 GPIO_1 3 9 425
10 PHY3 GPIO_0 3 10 426
11 PHY3 GPIO_1 3 11 427

The first four EMIO GPIOs are connected to the external PHY RESET_N pins. These can be driven LOW to place
the respective PHY in hardware reset. The remaining EMIO GPIOs are connected to the external PHY GPIO_x pins.
Although named “GPIO_x”, these PHY pins are in fact output-only and their purpose can be configured by setting
the GPIO Mux Control Register of the PHYs via the MDIO bus. Please refer to the DP83867 datasheet for more
information.

Constraints

For more information on the required constraints, please refer to the XDC files used by the example designs, located
in the constraints directory of the Github repository.

3.7.2 PetaLinux

This section provides the information required to build PetaLinux or other Linux distributions for use with the 96B
Quad Ethernet Mezzanine card.

Device tree for GEM design

The required additions to the device tree include:

• Define the phy0 to phy3 nodes within the gem0 node

• Within each phy node:

– Define the PHY address (reg)

– Set the TX and RX internal delay

– Set the FIFO depth

– Enable SGMII clock for PHY3 (ti,sgmii-ref-clock-output-enable)

– Disable SGMII auto-negotiation in PHY3 (ti,dp83867-sgmii-autoneg-dis see DP83867 patch
below)

• Add these properties to each of the gem0 to gem3 nodes:

34 Chapter 3. Where to buy

http://www.ti.com/product/DP83867CS
https://github.com/fpgadeveloper/ethernet96/tree/master/Vivado/src/constraints

96B Quad Ethernet Mezzanine

– Set PHY handle (use labels defined in the gem0 node)

– Set PHY mode set to GMII

– Set PHY reset to connected GPIO

– Set PHY reset to active-low

For more detail, refer to the device tree for the GEM design in the Github repository.

Device tree for AXI Ethernet design

• Define the phy0 to phy3 nodes within the mdio node of the axi_ethernet_0 node

• Within each phy node:

– Define the PHY address (reg)

– Specify PHY type to SGMII (xlnx,phy-type = <0x4>;)

– Set the TX and RX internal delay

– Set the FIFO depth

– Enable SGMII clock for PHY3 (ti,sgmii-ref-clock-output-enable)

– Disable SGMII auto-negotiation in PHY3 (ti,dp83867-sgmii-autoneg-dis see DP83867 patch
below)

• Add these properties to each of the axi_ethernet_0 to axi_ethernet_3 nodes:

– Set PHY handle (use labels defined in the axi_ethernet_0 node)

– Set PHY mode set to GMII

For more detail, refer to the device tree for the AXI Ethernet design in the Github repository.

Rootfs configuration

In the rootfs configuration, we add the following packages:

• ethtool

• ethtool-dev

• ethtool-dbg

• git

• iperf3

In PetaLinux SDK, the rootfs is configured using this command: petalinux-config -c rootfs

Kernel configuration

The following options must be set in the Kernel configuration:

• CONFIG_XILINX_DMA_ENGINES=y

• CONFIG_XILINX_DPDMA=y

• CONFIG_XILINX_ZYNQMP_DMA=y

• CONFIG_ETHERNET=y

3.7. Programming Guide 35

https://github.com/fpgadeveloper/ethernet96/blob/master/PetaLinux/src/ports-0123/project-spec/meta-user/recipes-bsp/device-tree/files/system-user.dtsi
https://github.com/fpgadeveloper/ethernet96/blob/master/PetaLinux/src/ports-0123-axieth/project-spec/meta-user/recipes-bsp/device-tree/files/system-user.dtsi

96B Quad Ethernet Mezzanine

• CONFIG_NET_VENDOR_XILINX=y

• CONFIG_XILINX_AXI_EMAC=y

• CONFIG_XILINX_PHY=y

• CONFIG_NET_CADENCE=y

• CONFIG_MACB=y

• CONFIG_NETDEVICES=y

• CONFIG_HAS_DMA=y

• CONFIG_CPU_IDLE=n

In PetaLinux SDK, the kernel is configured using this command: petalinux-config -c kernel

DP83867 Ethernet PHY driver patch

SGMII autonegotiation is disabled in the PCS/PMA or SGMII core for port 3, therefore we need to modify the driver
so that it can also disable SGMII autonegotiation in the PHY.

To allow for this, we patch the DP83867 driver to accept an extra property in the device tree:

• ti,dp83867-sgmii-autoneg-dis: When added to the GEM node, this will disable the SGMII autone-
gotiation feature when the PHY is configured (eg. ipconfig eth0 up)

This property should be included in the gem3 node or the axi_ethernet_3 node of the device tree (depending on
the Vivado design being used).

Since PetaLinux release 2020.1, the DP83867 driver will only configure the PHY for SGMII if the phy-mode prop-
erty (PHY interface) in the device tree is set to sgmii. In earlier releases, it would assume SGMII if phy-mode was
not set to rgmii. In our case, we cannot set phy-mode="sgmii" because that would cause the MACB driver to
set the SGMIIEN and PCSSEL bits in the GEM. Instead, we use phy-mode="gmii" and we patch the DP83867
driver such that it doesn’t require phy-mode="sgmii" to configure for SGMII.

The source code for this patch can be found in this path of the Github repo: PetaLinux/src/common/
project-spec/meta-user/recipes-kernel/linux/linux-xlnx

ZynqMP FSBL hooks patch

This patch modifies the ZynqMP FSBL to add code to the XFsbl_HookBeforeHandoff which is executed before the
FSBL hands over control to U-Boot. This code is necessary for initialization of the 96B Quad Ethernet Mezzanine
and the PCS/PMA or SGMII IP cores, so that U-Boot and Linux can make use of the Ethernet ports. The added code
does the following:

1. Initializes GEM0 so that it’s MDIO interface can be used (we need it to communicate with the external PHYs
and the PCS/PMA or SGMII IP cores)

2. Assert reset of PCS/PMA or SGMII IP core

3. Hardware reset the 4x Ethernet PHYs and release from reset

4. Enable the 625MHz SGMII output clock of the PHY of port 3 of the 96B Quad Ethernet Mezzanine card (PHY
address 0xF). This clock is required by the PCS/PMA or SGMII IP core

5. Release the PCS/PMA or SGMII IP core from reset

6. Disable ISOLATE bit on all PCS/PMA or SGMII IP cores, and enable autonegotiation on those cores for ports
0-2. Note that port 3 cannot support SGMII autonegotiation.

36 Chapter 3. Where to buy

96B Quad Ethernet Mezzanine

The source code for this patch can be found in this path of the Github repo: PetaLinux/src/common/
project-spec/meta-user/recipes-bsp/fsbl/files

xilinx_uartps: Really fix id assignment patch for 2020.1

This patch comes originated here: https://www.spinics.net/lists/linux-serial/msg39343.html Without this patch PetaL-
inux boot hangs after these lines:

console [tty0] enabled
bootconsole [cdns0] disabled

This problem occurs with PetaLinux 2020.1 on Ultra96 when using UART1 as the console output (serial0). Xilinx
produced a patch for this problem but it does not properly fix the problem: https://www.xilinx.com/support/answers/
75417.html

The complete solution is described in this Xilinx forum post: https://forums.xilinx.com/t5/Embedded-Linux/
Freeze-in-Xilinx-Linux-2020-1-Serial-UART-Driver/td-p/1130457

3.8 References

3.8.1 96B Quad Ethernet Mezzanine Board Files

1. 96B Quad Ethernet Mezzanine Rev-A Schematics PDF

2. 96B Quad Ethernet Mezzanine Rev-A Assembly Drawing PDF

3. 96B Quad Ethernet Mezzanine Rev-A 3D STEP model

3.8.2 Ultra96

1. Ultra96 product page

2. Ultra96 documentation page

3.8.3 Part Datasheets

Use the links below to access the datasheets of the significant parts on the mezzanine card:

1. Gigabit Ethernet PHY, DP83867, Texas Instruments

2. Quad RJ45 connector, 0826-1X4T-23-F, Bel Fuse Inc.

3. Switching regulator, TPS82150SILT, Texas Instruments

4. Non-inverting buffer, NC7WV16P6X, ON Semiconductor

5. Crystal 25MHz, 8Z-25.000MAAJ-T, TXC

6. Tactile switch, B3U-1000P, Omron

7. 40-pin Pin Socket 2mm, 55510-140LF, Amphenol FCI

8. 40-pin Pin Header 2mm, 57202-G52-20LF, Amphenol FCI

9. 60-pin Header 0.8mm, 61083-063402LF, Amphenol FCI

3.8. References 37

https://www.spinics.net/lists/linux-serial/msg39343.html
https://www.xilinx.com/support/answers/75417.html
https://www.xilinx.com/support/answers/75417.html
https://forums.xilinx.com/t5/Embedded-Linux/Freeze-in-Xilinx-Linux-2020-1-Serial-UART-Driver/td-p/1130457
https://forums.xilinx.com/t5/Embedded-Linux/Freeze-in-Xilinx-Linux-2020-1-Serial-UART-Driver/td-p/1130457
http://ethernet96.com/download/96BQuadEth_SCH_RevA-2.PDF
http://ethernet96.com/download/96BQuadEth_ASSM_RevA.PDF
http://ethernet96.com/download/96BQuadEthernetRevA-3D.zip
https://www.96boards.org/product/ultra96/
https://www.96boards.org/documentation/consumer/ultra96/
http://www.ti.com/product/DP83867CS
https://belfuse.com/resources/StewartConnector/0826-1X4T-23-F.pdf
http://www.ti.com/lit/ds/symlink/tps82150.pdf
https://www.onsemi.com/pub/Collateral/NC7WV16-D.pdf
http://www.txccorp.com/download/products/quartz_crystals/2015TXC_8Z_16.pdf
https://omronfs.omron.com/en_US/ecb/products/pdf/en-b3u.pdf
https://cdn.amphenol-icc.com/media/wysiwyg/files/drawing/55510.pdf
http://portal.fciconnect.com/Comergent//fci/drawing/57202.pdf
https://cdn.amphenol-icc.com/media/wysiwyg/files/drawing/61083.pdf

96B Quad Ethernet Mezzanine

3.8.4 Accessories

Extender for stacking a second mezzanine card:

1. 40-pin Pin socket with extended pins, F263-1220A0BSYE1, Yxcon

38 Chapter 3. Where to buy

http://ethernet96.com/download/F263-1220A0BSYE1.pdf

	Description
	Features
	Where to buy
	Pin Configuration
	Specifications
	Detailed Description
	Mechanical Information
	Getting Started
	Board Setup
	Programming Guide
	References

